
MPICH on the T3D: A Case Study of High Performance Message Passing *

Ron Brightwell t
Anthony Skjellum

Integrated Concurrent and Distributed Computation Research Lab and
NSF Engineering Research Center

Mississippi State University
bright@cs.sandia.gov
tony@cs.msstate.edu

Abstract

This paper describes the design, implementation and
performance of a port of the Argonne National Labora-
torylMississippi State University MPICH implementation of
the Message Passing Interface standard to the Cray T3D
massively parallel processing system. A description of the
factors influencing the design and the various stages of im-
plementation are presented. Performance results revealing
superior bandwidth and comparable latency as compared
to otherfull message passing systems on the T3D are shown.
Further planned improvements and optimizations, includ-
ing an analysis of a port to the T3E, are mentioned.

1. Introduction

As part of the MPICH project between Argonne National
Laboratories and Mississippi State University, a port of the
MPICH implementation of MPI to the T3D was designed
and implemented. This was not a rote exercise, but rather an
in-depth effort that stressed the internal abstract device in-
terface design of MPICH, demonstrated high performance,
while revealing several interesting issues concerning MPI
on systems that have distributed shared memory primitives
at a low level. While there were a number of bugs in
this implementation early on (including some incidental to
MPICH), the experiences associated with removing these
bugs and retaining high performance are illuminating. Fur-
thermore, the first-principles MPICH device created for this
port stands apart from others written using the channel inter-
face or P4, and so is an important contribution to the overall
device set of MPICH. Finally, issues concerning misalign-
ment and datatype-dependent performance have been iden-

*Work supported in part by the Department of Energy
t Presently on staff at Sandia National Laboratories, Albuquerque, NM

t3ed and should be factored into emerging MPI test suites.
The highest bandwidth of full message-passing systems

on the T3D has been achieved, with just a little help from
Cray, outstripping the PVM and EPCC MPI implementa-
tions. However, it is clear that vendor support would have
been helpful, inasmuch as the other message passing sys-
tems, which have vendor sanction, have also had access to
support for removing the subtle bugs that arise in pushing
the envelope of performance and functionality in the T3D
runtime environment. Higher bandwidth has been achieved
on collective operations, though they are far from optimal.

1.1. MPICH

MPICH is a portable implementation of the Message
Passing Interface (MPI) [31 standard developed jointly by
Argonne National Laboratory and Mississippi State Univer-
sity. MPICH contains an abstract device interface (ADI)
upon which a high-level message passing application pro-
grammer interface such as MPI can be implemented. The
AD1 performs four main functions [91:

Sending and receiving

Data transfer

Queueing

0 Device-dependent functions.

Porting MPICH to an architecture such as the T3D in-
volves the creation of new “device” that interacts with the
AD1 through a set of routines (see [SI for details) and han-
dles. These handles are used to cache device specific data
to pass information between the device independent and de-
vice dependent layers of MPICH.

0-8186-7533-0/96 $05.00 0 1996 IEEE
2

mailto:bright@cs.sandia.gov
mailto:tony@cs.msstate.edu

1.2. The Cray T3D

The Cray T3D is a massively parallel system which um-
tains up to 2048 processors connected b y a high-speed, 3.-D
torus communication network [6]. Cray T3D has a physi-
cally distributed shared memory, where each processing el-
ement (PE) has local memory which is gllobally addressable.
The T3D model is one process per PE and any PE can di-
rectly address any word of memory on any other PE. Cathe
consistency is the resonsibility of the us~er.

2. Design Decisions

The initial design decision was to choose the most ef-
ficient method of communication between processing de-
ments. Cray's Block Transfer Engine (BLT) was an original
consideration, but this method had some major drawbacks.
Using the BLT requires the overhead of making an expen-
sive system call. The asynchronous capability of the BLT
was appealing, but because of limited memory bandwidlth,
BLT was taken out of consideriition. Each processing ele-
ment shares a ELT engine with ;mother processing element.
When the ELT is in use by one PE, the second PE will b lcd
if it tries to access the BLT. The BLT also requires a flush
of the entire cache upon transfer.

Cray also offers a direct shared memory access library
(SHMEM) 171 for remote memory transfers. This li-
brary contains a plethora of functions foir point-to-point auld
collective communication, synchronization, and cache ma-
nipulation. The two basic operations in this library ,are
shmem_get(), which copies data from a remote PE to the lo-
cal PE, and shmemput0, which copies data from the local
PE to the remote PE. Multiples of 32- md 64-bit transfers
are supported, with aligned data.

After investigating both methods, and on the inforrnal
advice of Cray Research [ll], the shared memory library
was chosen as the means of connmunica tion upon which to
build the MPICH T3D device. Further inivestigation into the
shared memory library revealed that shmemput() transfers
data at nearly twice the bandwildth of shmem-get(). There-
fore, shmemput() was chosen as the basis for the imple-
mentation of the device.

In order to use shmem_put() bo transfer data, a remote ad-
dress on the receiver must be known U priori. Therefore, ihe
next step in the design process was determining a method
by which a sender could obtain a target address to which
a message could be sent. This method must also maintain
pairwise ordering for messages (within a communicator)i in
order to be MPI compliant [31.

Several possibilities were considered, based on ihe
available shared memory constructs arid functions in ihe
SHMEM library. The shmemswup() fitnction provides an
atomic swap operation, and wiis originally considered as

a means to gain atomic alccess to a pre-allocated message
buffer at the receiver. However, the latency cost associated
with such ,an operation was thought to be too high.

Global and static varialbles and dynamic memory allo-
cated with the 2rhemallocO function are guaranteed to have
the same addreis on every PE. It was decided that a message
buffer ccruld just be an offset into a array of message buffers
allocated from the shared heap. In fact, remote memory
writes to global or shared locations is the method encour-
aged by SIRMEM documentation [5, 71. In order to main-
tain pairwise ordering of messages, a sender was to have
only one: buffer into which messages would be written at
the receiver, and at any time there could only be one out-
standing message between a sender and a receiver.

Once the lour level communication design was complete,
a design for eflicient impliementation of MPI communica-
tions was cleveloped. A two-level protocol for sending mes-
sages was decided upon: a protocol for short messages in
which header information for each message would accom-
pany the body of the message, and a protocol for longer
messages in which the bodly could be delivered directly into
the user buffer at the receiver. These protocols would al-
low for ithe smaller messages to be sent quickly and also
allow for a limited global buffer space necessary for put-
based commumcation. Art additional protocol layer would
be to added to handle synchronous communications.

3. Implleimenitation

None of the: then-existing devices in the MPICH im-
plementation usied a put-based shared memory strategy for
communications. Therefore, a completely new device was
created for the Cray T3D, rather than building upon or aug-
menting a11 existing device. MPICH's AD1 provided the
required fimctions for message queueing, so the new de-
vice was respoinsible for sending and receiving messages,
transfer of data to the API., and a few other device specific
functions.

3.1. Sending and Receiving Messages

For the MPICH implementation, each process in the ap-
plication allocates an a r m y from the shared heap that con-
tains a slot into which every other process (including itself)
can send miessajyes (receive buffers) and an array of flags for
each of its buffers on every other process (send flags) (Fig-
ure 1). Allocating from the shared heap insures that both
of these ,data structures reside at the same address on every
process. The send flags indicate to the sender the state of its
receive twffer at the receiver, and is a method of flow con-
trol so that successive messages to the same receiver are not
overwiritibi and remain pairwise ordered.

3

PIvcess 0 a message header and the user data are sent. The message messages from 0 messages from 1

0 context id of the communicator being used Send Flags

Process 1 messages from 0 messages from 1 0 mode value identifying the type of message (short reg-

Figure 1. Receive Buffers and Send Flags.

Process 0

Before any message can be sent, the sender must wait
for the send flag associated with the receive buffer on the
receiving PE to be clear. This busy waiting involves travers-
ing its own receive buffers looking for incoming messages
to process so that communications may progress. As soon
as the send flag is clear, the sender sets the send flag and the
outgoing message is written to the receiver at the sender's
message slot. A new message at the receiver is signaled by
a status flag contained in each receive buffer. This status
flag is set when the sender writes a message header into its
receive buffer.

Traversal of the receive buffers by the receiving PE is
implemented as fairly as possible, with the search begin-
ning at the first buffer beyond where the last message was
received. Upon discovering a new message, the receiving
PEprocesses the message, clears the receive buffer flag, and
then informs the sending PE that its receive buffer is free by
clearing the send flag at the sending PE.

buffer on 0 buffer on 1 0 local rank of the sender within the communicator

Pmcess 1
0 messagetag

0 message length

status flag indicating the buffer is in use

buffer on 0 buffer on 1 1

The data is written to the receiver before the header is
written, insuring that the data will bevalid when the receiver
recognizes that the buffer contains a new message. If the
data is not four-byte aligned, it is copied to the sender's
own locally aligned receive buffer before it is written to the
receiver. The only use for the sender's own local receive
buffer is as a copy space.

Upon discovering any new message, the receiver
searches its posted receive queue against the context id, lo-
cal rank, and tag values for a match. If the search is suc-
cessful, the data is copied from the receive buffer into the
application's designated buffer. Both sending and receiving
of this message is complete. If the search is unsuccessful,
space for the data is allocated and the data is copied from
the receive buffer into the newly allocated buffer. This mes-
sage is then added to an unexpected message queue. Only
the sending side of this message is complete.

The receiver then clears the status flag in this receive
buffer and informs the sender that its receive buffer is now
free by writing a cleared status value into its designated send
flag at the sender.

For messages using the long protocol (Figure 3). only a
header is sent. The message header for the long protocol is
identical to the short message header, plus the the following
additional information:

Sender Receiver

0 local address of a structure where the receiver can
write (using a put) the following information:

Header - - - - P
Data + - location of the receive buffer

COPY
- location of the receiver's completed flag
- length of the receive buffer

The sender initializes the buffer length field to a negative
value, and writes only this header to the receiver. Upon dis-
covering this new message, the receiver again searches the
posted receive queue for a match, allocating a buffer if un-
successful (an unexpected message). For the long protocol,
a structure containing the address of the buffer, the length Figure 2. Short Send Protocol.

4

Sender Receiver Senidttr Receiver

Header - - - - :c
Data

Complete ------@

Long Send - - 3=
Info

Figure 3. Long Send Protocol.

of the buffer, and the address of the receiver’s request oom-
pleted flag is filled in and written back to the sender at the
location specified in the message headex.

Once this header has been processed by the receiver, the
reciever clears the status flags of the receiver buffer and send
flag, just as in the short protocol.

At the sender, a non-negative receive buffer length s ig
nals that the receiver has processed the message header anal
the user data may be written to the receiver at the specified1
location. After the user data is written, the sender writes aL
completed flag value to the receiver’s completed flag loca-
tion, informing the receiver that the data has been written
If this message was expected at the receiver, both sending:
and receiving of this message is complleted. If it was unex.
pected, only the send operation is complete, and the mes-
sage is added to the queue of unexpeckd messages at the:
receiver.

For synchronous send operations, both the short and long,
message headers contain the following additional inform
tion:

e local address of the send tmmpleted flag where the re-
ceiver can write a completed flag

For both long and short protocol messages, when the re-
ceiver recognizes the completion of a z;ynchronous receive.
operation, a completed flag is written to the location at the
sender specified in the message header (Figure 4 aud Fig-
ure 5) . Completion of a synchronous send operation is not
complete at the sender or the rexeiver until the receiver up-
dates the send completed flag.

When a receive is posted, the unexpected message queue.
is searched. If the search is successful, an unexpected mes-
sage handle is associated with the posted receive handle,

Header - - - - *
Data +
Complete ---*
COPY

Figure 4. Short Synchronous Send Protocol.

Sender Receiver

-... - .. --- --. - - -. --- -. - .. - .,

Header - - - - *
Data +
Complete -------*
Long Send - - *

Info

Figure 5. Long Synchronous Send Protocol.

Once the unexpected message is completed, the data is
copied from the allocated buffer to the application speci-
fied buffer. If the search is unsuccessful, the receive han-
dle is added tci a queue of posted receives. This queue is
searched every time a new message is discovered in the re-
ceive buffers.

This send protocol prohibits taking advantage of any op-
portunities for optimization provided by the MPI ready send
functions. Therefore, readly sends are equivalent to blocking
sends.

3.2. Cache coherency

Because remote memory updates take place without the
involvement of the remote processor, the cache on the re-

5

mote PE can become invalid. The SHMEM library provides
several functions used to help ensure cache coherency. Our
initial implementation chose the simplest of these meth-
ods. Automatic cache invalidation for all writes into lo-
cal memory by other PE’s can be enabled by a call to
shmemset-xacheinv(). This method was chosen rather
than invalidating individual cache lines or flushing the en-
tire data cache whenever a receive is posted.

3.3. Address Validation

Extreme caution must be taken when using shmemputtj
to write into a non-global address on a remote PE. Global
variables, static variables and memory allocated from the
global shared heap using shmalloc() are guaranteed to be
identical and valid on every PE. However, automatic vari-
ables allocated from the local stack and dynamic memory
allocated from the local heap are not guaranteed to be valid
on every process. The shmemputf) function checks the va-
lidity of both the source and target addresses in the local
process’ address space. Should the target address not be
a valid address in the sender’s address space, an operand
range error is generated, and, if not caught, results in the
application dumping a corefile. In order to write to any ad-
dress on another PE, the target address must be made valid
at the sender.

Cray Research (CRI) pointed out an undocumented func-
tion, mallocbrk(), which exists for validating memory d o -
Gated from the local heap using malloc(). mallocbrk() es-
sentially works like the brk() system call, exapanding the
heap as necessary to make the target heap address valid.
However, unlike brk(), the extra memory is added to the
mafloc() free list for use by the application. CRI also con-
tributed an assembly routine, .dimemstack(), for validating
memory allocated from the local stack. shmemstack() ex-
tends the local stack if the target address is beyond the top
of the local stack.

There are only a few places in the implementation where
the target address must be checked for validity and be made
valid. In the long protocol, the receiver must validate the ad-
dress at the sender where the structure containing the loca-
tion of the receive buffer, the location of the receiver’s com-
pleted flag, and the length of the receive buffer are written.
Likewise, the sender must then validate this receive buffer
location before the user data can be written and also the re-
ceive completed location before the receive completed flag
can be written. Similarly, in the synchronous protocol, the
receiver must validate the location of the send completed
flag at the sender before the flag can be updated. All other
puts are done to memory allocated from the shared heap.

Checking for an invalid address is done by comparing the
target address with both the top of the stack and also with
the current break value obtained from sbrk(). Since there

was no accurate means by which to get the value of the top
of the stack, a simple assembly routine returning the stack
pointer was written. Should the target address be less than
the top of the stack or greater than the current heap break
value, the target’s distance from each of those two limits is
calculated. If the target is closest to the top of the stack,
the stack is expanded, and if the target is closest to the heap
break value, the heap is extended. The costs associated with
checking the validity of a target address and extending the
stack are nominal, but extending the heap involves making
system calls to mallocbrk() and sbrk().

3.4. Alignment

Because shmemput() can only transfer data that is four-
byte aligned, temporary buffers are allocated for transfers
involving addresses which are either not four-byte aligned
or which are not a multiple of four in length. A tempo-
rary send buffer is allocated for a long protocol send that
originates from an address that is not four-byte aligned. A
temporary receive buffer is also allocated in the long pro-
tocol for a receive that is destined for a buffer which is
not four-byte aligned or whose length is not a multiple of
four. Consequently, sending and receiving to and from mis-
alinged buffers has a substantial performance degradation
that could be improved by a more optimal implementation.
However, since character data is the only type which is
not four-byte aligned, and due to the associated additional
code complexity, efforts toward optimization of misaligned
buffer use were considered to be of low priority.

4. Performance

Performance tests were run using the mpptest program
contained in the MPICH distribution. The tests were run
with the default parameters, using only the ‘-size’ switch
to modlfy the start, end, and increment message sizes.
The tests compare the current MPICH implementation with
Cray ResearchlEndiburgh Parallel Computing Centre im-
plementation version 1.4a. All tests were run on two pro-
cessors.

Figure 6 compares the latency for message lengths from
zero to 1024 in increments of 32 bytes. While the MPICH
numbers are erratic, the performance is comparable to that
of the CRI/EFCC.

Figure 7 compares the bandwidth for message lengths
from 10k to 200k in increments of 1Ok. Bandwidth of the
C R I B C C version levels off to around 29 megabytes per
second starting at messages of 100k. However, the MPICH
bandwidth continues to increase, leveling off to approxi-
mately 100 megabytes per second at messages of 1OOk. Fig-
ure 8 shows the continuation for message sizes from one

6

Figure 6. Small Message Latency. Figure 8. Large Message Bandwidth.

to five megabytes in the length. The kIPICH implementa-
tion levels off at around 107 megabytes per second, achiev-
ing approximately 85% of the available peak bandwidth,
while the CRVEPCC version continues to hover around. 30
megabytes per second.

e
B

10 50 1 WO 150 200
Message 6118 in Kilabylss

_I

Figure 7. Medium Message IBandwidth.

5. Stages of Implementation

The original device for the T3D was built from an exist-
ing device constructed for the Myrinet <gigabit network [ll.
Even though a device for shared memory communications
existed in the MPICH distribution, the code was judged to
be too complex to either integrate a strictly put-based shared
memory implementation into or to use as a starting point for
such a device. The complexity of the code for the device for
Myrinet was much less, and the learning curve associated
with implementing a T3D device from the Myrinet device
was judged to be much lower. Only the basic framework of
the device was retained and all code mid device dependlent
structures were eliminated.

As a result, implementhg the first T3D device required
only approximately one month. However, because the de-
vice for Myrind was packet-based and was not designed
for shared-memory-type operations, the T3D device had to
be shaped into one which was. Subsequent improvements
made over the course of four months worked to optimize
the devilce for a distributed shared memory environment.

The initial device was crude and did not properly han-
dle message buffers that were not eight-byte aligned. An
initial improvement involved replacing shmemputo with
shmempt32(), the SHMEM function for transferring four-
byte alignted quantities. However, buffers that were not
four-byte aligned or a multiple of four in length were still
not properly managed.

Further implrovements to the device fixed bugs associ-
ated with the llong send protocol. In the initial implemen-
tation of (he long send protocol, both blocking and non-
blocking sends were handled identically. After sending a
long message lieader to die receiver, the sender would en-
ter a busy wait loop in the device layer waiting for the re-
ceiver to respond. This method did not take advantage of
the opportunities for increased performance offered by non-
blocking send operations. The implementation was mod-
ified so that the long send protocol would simply write a
long senid header to the receiver when the send was posted
and would try to complefe the send at some later point in
time. This implemenation caused protocol failures for cer-
tain combinations of wait and test operations. The current
device c:ointains a queue of incomplete long send request
handles. When testing or waiting on a receive request han-
dle, the long send requad must be traversed so that long
sends mak.e progress [21.

The biggest problem with the MPICH T3D device was
its propensity for spurious message loss. This because of
a misunderstanding of how shmemput() messages were re-
ceived. In the first implementation stages, the status flag
that notified the receiver of a new message was the first field

7

in the message header structure. Even though the header
was written in one ‘message’, the status field could be in
a different cache line than the rest of the header informa-
tion. A receiver that was traversing its receive buffers look-
ing for status flags to be set could possibly recognize a set
status flag and copy the other header information before it
was valid or even written to memory. As such, the message
would be received, but it most likely would contain incor-
rect values in the context or tag fields and end up in the
unexpected message queue. This problem was solved by
moving the status flag so that it is the last value written into
the receive buffer, insuring that all other header information
is valid when a set status flag is discovered.
CRI introduced a bug by changing the implementation of

mallocbrk() so that the shmemstacko routine was extend-
ing the stack to an illegal value. The symptoms of this prob-
lem were recognized without the help of CRI. Test codes ex-
hibited operand range errors upon entering functions subse-
quent to a call to shmemstackf) to validate a target address.
This problem was fixed by saving the stack pointer before
the shmemstack() call and resetting the stack pointer afer
the shmemput() call. An assembly routing was written to
reset the value of the stack pointer. The cause of this prob-
lem was only surmised, and while this seemed to be the
only solution, recent information from CRI confirmed our
suspicions and the validity of the solution.

6. Future Work

There are many performance improvements and en-
hancements that need to be investigated for this device. The
m e n t implementation only transfers contiguous blocks
of data, packing and unpacking non-contiguous datatypes

e d d Use of strided puts with the shmemaput()
for indexed data types, or even multiple puts for

vector datatypes needs to be studied.
The design of the send 5ags and receive buffers provides

the ability to do accomplish control so that buffering unex-
pected messages may be turned on or off or even coni?gured
to use only a set amount of memory. This desirable feature
has not currently been utilized as a means of reducing the
amount of required buffer space.

The collective operations are the default MPICH col-
lective operations which are built on top of MPI point-to-
point communications. While these have shown good per-
formance on the T3D, building MPI collective communica-
tions on top of the SHMEM collective operations needs to
be investigated promptly.

Work is ongoing on the next generation AD1 [lo]. The
goal of this new AD1 is to eliminate as much overhead as
possible and achieve lower latencies than the first genera-
tion AD1 for common cases, such as sending and receiving
contiguous datatypes. Additionally, the new AD1 should

maintain ease of implementation and retain opportunities to
take advantage of the advanced capabilities of the underly-
ing hardware.

The MPICH T3D device can and should also be used
as a basis for a port to the T3D’s successor, the T3E 141.
The shared memory library on the T3E has elminated much
of the complexity of the T3D device by augmenting func-
tionality. T3E systems have automatic cache coherency, so
the device need not explicitly invalidate the cache on re-
mote memory writes. The T3E also does not attempt to val-
idate remote addresses on the local PE, correcting the T3D
flaw. The checkmg and validating of remote addresses us-
ing shmemstacko and mallocbrk() will not be required. A
major difference between the T3D and T3E will be the abil-
ity to have out-of-order puts because of adaptive 3D routing.
Currently, the T3D ensures that successive puts to the same
PE will arrive in the order sent. On the T3E, this may not
be assumed. A library function, shmemfenceO, must be
called between successive puts to insure that the puts will
occur in the order issued. This adaptive routing feature can
possibly be exploited for collective as well as point-to-point
communications.

7. Acknowledgments

Gratitude is expressed to Peter Rigsbee of CRI for guid-
ance in choosing the best communication facilites and
for information regarding mallocbrk() and shmemstacko.
Thanks also to Karl Feind of CRI for information about the
T3E. Gratitude is also expressed to Shane Hebert of Missis-
sippi State University for his work testing the various imple-
mentations. And finally, deep thanks are extended to Rusty
Lusk and Bill Gropp of Argonne National Laboratory for
their help in this endeavor.

Ref er en ces

[ll N. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W. Su. Miyrinet-a gigabit-
per-second local-area network. ZEEE Micro, 15(1):29-36,
February 1995.

[2] G. Burns and R. Daoud. Robust MPI message delivery with
guaranteed resources. MPI Developers Conference, June
1995.

[3] L. Clark, I. Glendinning, and R. Hempel. The MPI Message
Passing Interface Standard. Technical report, Edinburgh Par-
allel Computing Centre, The University of Edinburgh, 1994.

[4] I. Cray Research. The Cray T3E series. http://
www.cray.com/ PUBLIC/product-info/T3E/overview.html.

[5] Cray Research, Inc. Cruy Research MPP Software Guide,

[GI Cray Research, Inc. Cruy T3D System Architecture

[7] Cray Research, Inc. SHMEM Technical Note for C, SG-2516

SG-2508 1 .I, 1994.

Overview, HR-04033, March 1994.

2.3, October 1994.

8

http://www.cray.com

[SI W. Cropp and E. Lusk. MPICH AD.[Implementation Refer-
ence Manual. Mathematics and Computer Science Division,
Argonne National Laboratory, October 1994.

[9] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable
Parallel Programming with the Message Passing Interface.
MlT Press, 1994.

[IO] W. Gropp and R. Lusk. MI'ICH working note: The second-
generation AD1 for the MPICH implementation of K.Ip'I.
Technical report, Mathematics and Computer Science Di-
vision, Argonne National L,aboratory, February 1996.

[l l] P. Rigsbee. Personal correspondence, January 1995.

9

